کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6262964 | 1613817 | 2015 | 16 صفحه PDF | دانلود رایگان |
- Pre-TBI exercise improved post-TBI sensorimotor and cognitive function.
- Exercise increased VEGF-A and EPO gene and protein expression in the brain.
- Increasing VEGF-A and EPO early after TBI may improve outcomes.
PurposeTo determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus).Methods120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus.ResultsEX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised.ConclusionsImproved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain.
Journal: Brain Research - Volume 1622, 5 October 2015, Pages 414-429