کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6268517 1614630 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complex spike patterns in olfactory bulb neuronal networks
ترجمه فارسی عنوان
الگوهای اسپایک پیچیده در شبکه های عصبی لامپ های بویایی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی


- Complex patterns of spikes can be detected in the mitral cell layer of the olfactory bulb.
- These patterns can be detected by utilizing a multivariate approach known as T-pattern analysis.
- The incidence of sequences is much greater in real data than when those data are randomized.
- The incidence of sequences may reflect physiological condition.

BackgroundT-pattern analysis is a procedure developed for detecting non-randomly recurring hierarchical and multiordinal real-time sequential patterns (T-patterns).New methodWe have inquired whether such patterns of action potentials (spikes) can be extracted from extracellular activity sampled simultaneously from many neurons across the mitral cell layer of the olfactory bulb (OB). Spikes were sampled from urethane-anaesthetized rats over a 6 h recording session, or a period lasting as long as permitted by the physiological condition of the animal. Breathing was recorded to mark peak inhalation and exhalation.ResultsComplex T-patterns of up to ∼20 elements were identified with functional connections often spanning the full extent of the array. A considerable proportion of these sequences incorporated breathing.Comparison with existing methodsIn contrast to sequence detection by synfire, the incidence of sequences detected in our real data is very much greater than in the same data when randomized either by shuffling, or an alternative procedure preserving the interval structure of each spike train, and so more conservative. Further, when recordings were terminated before completion of the full recording session, the relative pattern detection in real and randomized data was a strong indicator of physiological condition-in recordings leading up to the preparation becoming physiologically unstable, the number of patterns detected in real data approached that in the randomized data.ConclusionsWe conclude that such sequences are an important physiological property of the neural system studied, and suggest that they may form a basis for encoding sensory information.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Neuroscience Methods - Volume 239, 15 January 2015, Pages 11-17
نویسندگان
, , ,