کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6269005 1295113 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational NeuroscienceOn the discovery of group-consistent graph substructure patterns from brain networks
ترجمه فارسی عنوان
عصبشناسی محاسباتی در مورد کشف الگوهای زیر ساختار نمودار از شبکه مغزها
کلمات کلیدی
شبکه های کاربردی زیرگرافی های کلیدی اتصال، معدن گراف
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی

Complex networks constitute a recurring issue in the analysis of neuroimaging data. Recently, network motifs have been identified as patterns of interconnections since they appear in a significantly higher number than in randomized networks, in a given ensemble of anatomical or functional connectivity graphs. The current approach for detecting and enumerating motifs in brain networks requires a predetermined motif repertoire and can operate only with motifs of small size (consisting of few nodes).There is a growing interest in methodologies for frequent graph-based pattern mining in large graph datasets that can facilitate adaptive design of motifs. The results presented in this paper are based on the graph-based Substructure pattern mining (gSpan) algorithm and introduce a manifold of ways to exploit it for data-driven motif extraction in connectomics research.Functional connectivity graphs from electroencephalographic (EEG) recordings during resting state and mental calculations are used to demonstrate our approach. Relying on either time-invariant or time-evolving graphs, characteristic motifs associated with various frequency bands were derived and compared. With a suitable manipulation, the gSpan discovers motifs which are specific to performing mental arithmetics. Finally, the subject-dependent temporal signatures of motifs' appearance revealed the transient nature of the evolving functional connectivity (math-related motifs “come and go”).

► We introduce a potential alternative to current techniques for generating motif repertoire in brain connectivity research. ► We indicate, using actual functional connectivity graphs, various ways to exploit the new technique for gaining insights to assembled connectivity graph datasets. ► Using the proposed contrastive learning scheme for motif extraction we finally score and rank the detected motifs according to their importance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Neuroscience Methods - Volume 213, Issue 2, 15 March 2013, Pages 204-213
نویسندگان
, , , , ,