کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6276670 1614900 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cellular and Molecular NeuroscienceResearch PaperCuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Cellular and Molecular NeuroscienceResearch PaperCuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2
چکیده انگلیسی

There are distinct distributions and associations with vesicular glutamate transporters (VGLUTs) for auditory nerve and specific somatosensory projections in the cochlear nucleus (CN). Auditory nerve fibers project primarily to the magnocellular areas of the ventral cochlear nucleus and deepest layer of the dorsal cochlear nucleus and predominantly colabel with VGLUT1; whereas the spinal trigeminal nucleus (Sp5) projections terminate primarily in the granule cell domains (GCD) of CN and predominantly colabel with VGLUT2. Here, we demonstrate that the terminals of another somatosensory pathway, originating in the cuneate nucleus (Cu), also colabel with VGLUT2. Cu projections in cochlear nucleus exhibited a bilateral distribution pattern with ipsilateral dominance, with 30% of these classified as putative mossy fibers (MFs) and 70% as small boutons (SBs). Cu anterograde endings had a more prominent distribution in the GCD than Sp5, with a higher percentage of MF terminals throughout the CN and higher MF/SB ratio in GCD. 56% of Cu endings and only 25% of Sp5 endings colabeled with VGLUT2. In both cases these were mostly MFs with only 43% of Cu SBs and 18% of Sp5 SBs colabeled with VGLUT2. The few Cu and Sp5 terminals that colabeled with VGLUT1 (11% vs. 1%), were evenly distributed between MFs and SBs. The high number of VGLUT2-positive Cu MFs predominantly located in the GCD, may reflect a faster-acting pathway that activates primarily dorsal cochlear nucleus cells via granule cell axons. In contrast, the higher percentage of Sp5-labeled SB terminals and a greater number of projections outside the GCD suggest a slower-acting pathway that activates both dorsal and ventral cochlear nucleus principal cells. Both projections, with their associations to VGLUT2 likely play a role in the enhancement of VGLUT2 after unilateral deafness [Zeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S (2009) J Neurosci 29:4210-4217] that may be associated with tinnitus.

Research highlights▶Cuneate projections to the CN terminate as mossy fibers or small boutons. ▶Cuneate projections to the CN co-label with VGLUT2. ▶Trigeminal projections distribute more widely in CN than cuneate projections. ▶Cuneate and trigeminal projections to CN label almost exclusively with VGLUT2. ▶Few terminals from cuneate and trigeminal nuclei in CN label with VGLUT1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 176, 10 March 2011, Pages 142-151
نویسندگان
, , ,