کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6297140 1617484 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals
ترجمه فارسی عنوان
یکپارچگی شبکه های عصبی ناظر و نظارت شده برای پیش بینی غلظت اکسیژن محلول در کانال ها
کلمات کلیدی
خوشه بندی فضای فضا، تکنیک های خوشه بندی، شبکه های عصبی تحت نظارت و کنترل نشده، مدیریت آب،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی


- Compensate the shortfalls of supervised technique in predicting DO value.
- Cluster data and apply supervised and unsupervised ANN to improve DO prediction.
- The technique can be applied to general water resource management plan.

The main focus of this paper was to devise a method to accurately predict the amount of dissolved oxygen (DO) in Bangkok canals at the present month based on the following 13 water quality parameters collected the previous month: temperature, pH value (pH), hydrogen sulfide (H2S) content, DO, biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total kjeldahl nitrogen (TKN), ammonia nitrogen (NH3N), nitrite nitrogen (NO2N), nitrate nitrogen (NO3N), total phosphorous (T-P), and total coliform (TC). Accurately predicting the amount of DO in a canal via scientific deduction is an important step in efficient water management and health care planning. We proposed a new technique that enhances the prediction accuracy by constructing a set of sub-manifolds of the predicting function by deploying unsupervised and supervised neural networks. The data were obtained from the Bangkok Metropolitan Administration Department of Drainage and Sewerage during the years 2007-2011. Comparisons between our proposed technique and other techniques using the correlation coefficient (R), the mean absolute error (MAE), and the mean square error (MSE) showed that our proposed approach with the sub-space clustering technique yielded higher accuracy than did other approaches without the sub-space clustering technique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volumes 261–262, 24 July 2013, Pages 1-7
نویسندگان
, , ,