کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6341 484 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles
چکیده انگلیسی

Cancer stem cells (CSCs) are recently discovered as vital obstacles for the successful cancer therapy. Emerging evidences suggest that miR-200c functions as an effective CSCs inhibitor and can restore sensitivity to microtubule-targeting drugs. In the present work, the intelligent gelatinases-stimuli nanoparticles (NPs) was set up to co-deliver miR-200c and docetaxel (DOC) to verify their synergetic effects on inhibition of CSCs and non-CSC cancer cells. After tumor cells were treated with miR-200c NPs, miR-200c and its targeted gene class III beta-tubulin (TUBB3)TUBB3 expression were evaluated. The effects of miR-200c/DOC NPs on tumor cell viability, migration and invasion as well as the expression of E-cadherin and CD44 were studied. The antitumor effects of miR-200c/DOC NPs were compared with DOC NPs in xenograft gastric cancer mice. Moreover, the residual tumors after treatment were subcutaneously seeded into nude mice to further investigate the effective maintenance of NPs. We found that the gelatinases-stimuli NPs facilitated miR-200c into cells, achieving sustained miR-200c expression in tumor cells during 9 days. The miR-200c/DOC NPs significantly enhanced cytotoxicity of DOC, possibly by decreasing TUBB3 level, and reversing EMT. The miR-200c NPs achieved high levels of in vivo accumulation and long retention in gastric cancer xenografts after intravenous administration. The miR-200c/DOC NPs prominently suppressed in vivo tumor growth with elevated miR-200c and E-cadherin levels and down-regulated TUBB3 and CD44 expressions. When the residual tumors after miR-200c/DOC NPs treatment were re-transplanted into nude mice, the tumors demonstrated the slowest growth speed. The miR-200c/DOC NPs may provide a promising modality for co-delivery of nucleic acid and drugs to simultaneously inhibit CSCs and non-CSC cancer cells.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 34, Issue 29, September 2013, Pages 7191–7203
نویسندگان
, , , , , , , , , , ,