کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6381822 1625925 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta)
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta)
چکیده انگلیسی
Harmful algal blooms are increasing in frequency and extent worldwide and occur nearly annually off the west coast of Florida where they affect both humans and wildlife. The dinoflagellate Karenia brevis is a key organism in Florida red tides that produces a suite of potent neurotoxins collectively referred to as the brevetoxins (PbTx). Brevetoxins bind to and open voltage gated sodium channels (VGSC), increasing cell permeability in excitable cells and depolarizing nerve and muscle tissue. Exposed animals may thus show muscular and neurological symptoms including head bobbing, muscle twitching, paralysis, and coma; large HABs can result in significant morbidity and mortality of marine life, including fish, birds, marine mammals, and sea turtles. Brevetoxicosis however is difficult to treat in endangered sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. In this study we used the freshwater turtle Trachemys scripta as a model organism to investigate the effects of the specific brevetoxin PbTx-3 in the turtle brain. Primary turtle neuronal cell cultures were exposed to a range of PbTx-3 concentrations to determine excitotoxicity. Agonists and antagonists of voltage-gated sodium channels and downstream targets were utilized to confirm the toxin's mode of action. We found that turtle neurons are highly resistant to PbTx-3; while cell viability decreased in a dose dependent manner across PbTx-3 concentrations of 100-2000 nM, the EC50 was significantly higher than has been reported in mammalian neurons. PbTx-3 exposure resulted in significant Ca2+ influx, which could be fully abrogated by the VGSC antagonist tetrodotoxin, NMDA receptor blocker MK-801, and tetanus toxin, indicating that the mode of action in turtle neurons is the same as in mammalian cells. As both turtle and mammalian VGSCs have a high affinity for PbTx-3, we suggest that the high resistance of the turtle neuron to PbTx-3 may be related to its ability to withstand anoxic depolarization. The ultimate goal of this work is to design treatment protocols for sea turtles exposed to red tides worldwide.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volume 180, November 2016, Pages 115-122
نویسندگان
, ,