کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6414302 1630462 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solvable, reductive and quasireductive supergroups
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Solvable, reductive and quasireductive supergroups
چکیده انگلیسی

It is well known that if the ground field K has characteristic zero and G is a connected algebraic group, defined over K, then the Lie algebra Lie(G′) of the commutant G′ of G coincides with the commutant Lie(G)′ of Lie(G). We show that this result is no longer true in the category of algebraic supergroups. We also construct a reductive supergroup H=X⋊G, where X and G are connected, reduced and abelian supergroups, such that Xu≠1 and (Hev)u is non-trivial connected (super)group. Quasi-reductive supergroups have been introduced in [10]. We prove that a supergroup H is quasi-reductive if and only if the largest even (super)subgroup of the solvable radical R(H) is a torus, H˜=H/R(H) contains a normal supersubgroup U, which is quasi-isomorphic to a direct product of normal supersubgroups Ui, and H˜/U is a triangulizable supergroup with odd unipotent radical. Moreover, for every i, Lie(Ui)=Ui⊗Sym(ni) are such that either ni=0 and Ui is a classical simple Lie superalgebra, or ni=1 and Ui is a simple Lie algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 452, 15 April 2016, Pages 448-473
نویسندگان
, ,