کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6414366 1630468 2016 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra
چکیده انگلیسی

In analogy with a recent result of N. Kowalzig and U. Krähmer for twisted Calabi-Yau algebras, we show that the Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra, thus generalizing a result of T. Tradler for finite dimensional symmetric algebras. We give a criterion to determine when a Frobenius algebra given by quiver with relations has semisimple Nakayama automorphism and apply it to some known classes of tame Frobenius algebras. We also provide ample examples including quantum complete intersections, finite dimensional Hopf algebras defined over an algebraically closed field of characteristic zero and the Koszul duals of Koszul Artin-Schelter regular algebras of dimension three.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 446, 15 January 2016, Pages 103-131
نویسندگان
, , ,