کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6414697 1630515 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Homotopy category of projective complexes and complexes of Gorenstein projective modules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Homotopy category of projective complexes and complexes of Gorenstein projective modules
چکیده انگلیسی

Let R be a ring with identity and C(R) denote the category of complexes of R-modules. In this paper we study the homotopy categories arising from projective (resp. injective) complexes as well as Gorenstein projective (resp. Gorenstein injective) modules. We show that the homotopy category of projective complexes over R, denoted K(PrjC(R)), is compactly generated provided K(PrjR) is so. Based on this result, it will be proved that the class of Gorenstein projective complexes is precovering, whenever R is a commutative noetherian ring of finite Krull dimension. Furthermore, it turns out that over such rings the inclusion functor ι:K(GPrjR)↪K(R) has a right adjoint ιρ, where K(GPrjR) is the homotopy category of Gorenstein projective R modules. Similar, or rather dual, results for the injective (resp. Gorenstein injective) complexes will be provided. If R has a dualising complex, a triangle-equivalence between homotopy categories of projective and of injective complexes will be provided. As an application, we obtain an equivalence between the triangulated categories K(GPrjR) and K(GInjR), that restricts to an equivalence between K(PrjR) and K(InjR), whenever R is commutative, noetherian and admits a dualising complex.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 399, 1 February 2014, Pages 423-444
نویسندگان
, , ,