کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415796 1336143 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zeros of certain quadratic forms over rational function fields and Prestel's theorem
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Zeros of certain quadratic forms over rational function fields and Prestel's theorem
چکیده انگلیسی

Let k be a field of characteristic distinct from 2, d∈k⁎. Let further φ and ψ be quadratic forms over k, dimφ=p, dimψ=q. Suppose that the form Φ=φ⊥(t2−d)ψ is isotropic over the rational function field k(t). We prove that there exists a nontrivial polynomial zero of Φ of degree at most min⁡(2p,2q,[p+qi0(Φ)]−1), where i0(Φ) is the Witt index of the form Φ, and the degree of a polynomial zero of Φ is understood as the largest degree of its components. Also we show that for any positive integers p and q there exists a field k, d∈k⁎, forms φ, ψ over k, dimφ=p, dimψ=q such that any nontrivial zero of the form Φ=φ⊥(t2−d)ψ has degree at least min⁡(p+1,q). In particular, we show that the upper bound on the degrees of zeros of forms in Prestel's theorem [6] is at most two times bigger than the strict bound.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 220, Issue 1, January 2016, Pages 411-421
نویسندگان
,