کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6415892 1336183 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topologies on groups determined by sets of convergent sequences
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Topologies on groups determined by sets of convergent sequences
چکیده انگلیسی

A Hausdorff topological group (G,τ) is called an s-group and τ is called an s-topology if there is a set S of sequences in G such that τ is the finest Hausdorff group topology on G in which every sequence of S converges to the unit. The class S of all s-groups contains all sequential Hausdorff groups and it is finitely multiplicative. A quotient group of an s-group is an s-group. For a non-discrete topological group (G,τ) the following three assertions are equivalent: (1) (G,τ) is an s-group, (2) (G,τ) is a quotient group of a Graev free topological group over a metrizable space, (3) (G,τ) is a quotient group of a Graev free topological group over a sequential Tychonoff space. The Abelian version of this characterization of s-groups holds as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 217, Issue 5, May 2013, Pages 786-802
نویسندگان
,