کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6415996 | 1631086 | 2016 | 29 صفحه PDF | دانلود رایگان |

We propose a novel factorization of a non-singular matrix P, viewed as a 2Ã2-blocked matrix. The factorization decomposes P into a product of three matrices that are lower block-unitriangular, upper block-triangular, and lower block-unitriangular, respectively. Our goal is to make this factorization “as block-diagonal as possible” by minimizing the ranks of the off-diagonal blocks. We give lower bounds on these ranks and show that they are sharp by providing an algorithm that computes an optimal solution. The proposed decomposition can be viewed as a generalization of the well-known Block LU factorization using the Schur complement. Finally, we briefly explain one application of this factorization: the design of optimal circuits for a certain class of streaming permutations.
Journal: Linear Algebra and its Applications - Volume 509, 15 November 2016, Pages 114-142