کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6416744 1336855 2013 55 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dual polar graphs, the quantum algebra Uq(sl2), and Leonard systems of dual q-Krawtchouk type
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Dual polar graphs, the quantum algebra Uq(sl2), and Leonard systems of dual q-Krawtchouk type
چکیده انگلیسی

In this paper we consider how the following three objects are related: (i) the dual polar graphs; (ii) the quantum algebra Uq(sl2); (iii) the Leonard systems of dual q-Krawtchouk type. For convenience we first describe how (ii) and (iii) are related. For a given Leonard system of dual q-Krawtchouk type, we obtain two Uq(sl2)-module structures on its underlying vector space. We now describe how (i) and (iii) are related. Let Γ denote a dual polar graph. Fix a vertex x of Γ and let T=T(x) denote the corresponding subconstituent algebra. By definition T is generated by the adjacency matrix A of Γ and a certain diagonal matrix A*=A*(x) called the dual adjacency matrix that corresponds to x. By construction the algebra T is semisimple. We show that for each irreducible T-module W the restrictions of A and A* to W induce a Leonard system of dual q-Krawtchouk type. We now describe how (i) and (ii) are related. We obtain two Uq(sl2)-module structures on the standard module of Γ. We describe how these two Uq(sl2)-module structures are related. Each of these Uq(sl2)-module structures induces a C-algebra homomorphism Uq(sl2)→T. We show that in each case T is generated by the image together with the center of T. Using the combinatorics of Γ we obtain a generating set L,F,R,K of T along with some attractive relations satisfied by these generators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 438, Issue 1, 1 January 2013, Pages 443-497
نویسندگان
,