کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6417089 1338528 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform upper bounds for the cyclicity of the zero solution of the Abel differential equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniform upper bounds for the cyclicity of the zero solution of the Abel differential equation
چکیده انگلیسی

Given two polynomials P,q we consider the following question: “how large can the index of the first non-zero moment m˜k=∫abPkq be, assuming the sequence is not identically zero?” The answer K to this question is known as the moment Bautin index, and we provide the first general upper bound: K⩽2+deg⁡q+3(deg⁡P−1)2. The proof is based on qualitative analysis of linear ODEs, applied to Cauchy-type integrals of certain algebraic functions.The moment Bautin index plays an important role in the study of bifurcations of periodic solution in the polynomial Abel equation y′=py2+εqy3 for p,q polynomials and ε≪1. In particular, our result implies that for p satisfying a well-known generic condition, the number of periodic solutions near the zero solution does not exceed 5+deg⁡q+3deg2⁡p. This is the first such bound depending solely on the degrees of the Abel equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 259, Issue 11, 5 December 2015, Pages 5769-5781
نویسندگان
, ,