کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6417105 1338528 2015 70 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: A quantitative error estimate
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
From the Boltzmann equation to the incompressible Navier-Stokes equations on the torus: A quantitative error estimate
چکیده انگلیسی

We investigate the Boltzmann equation, depending on the Knudsen number, in the Navier-Stokes perturbative setting on the torus. Using hypocoercivity, we derive a new proof of existence and exponential decay for solutions close to a global equilibrium, with explicit regularity bounds and rates of convergence. These results are uniform in the Knudsen number and thus allow us to obtain a strong derivation of the incompressible Navier-Stokes equations as the Knudsen number tends to 0. Moreover, our method is also used to deal with other kinetic models. Finally, we show that the study of the hydrodynamical limit is rather different on the torus than the one already proved in the whole space as it requires averaging in time, unless the initial layer conditions are satisfied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 259, Issue 11, 5 December 2015, Pages 6072-6141
نویسندگان
,