کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6417158 1338528 2015 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
L-Kuramoto-Sivashinsky SPDEs in one-to-three dimensions: L-KS kernel, sharp Hölder regularity, and Swift-Hohenberg law equivalence
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
L-Kuramoto-Sivashinsky SPDEs in one-to-three dimensions: L-KS kernel, sharp Hölder regularity, and Swift-Hohenberg law equivalence
چکیده انگلیسی

Generalizing the L-Kuramoto-Sivashinsky (L-KS) kernel from our earlier work, we give a novel explicit-kernel formulation useful for a large class of fourth order deterministic, stochastic, linear, and nonlinear PDEs in multispatial dimensions. These include pattern formation equations like the Swift-Hohenberg and many other prominent and new PDEs. We first establish existence, uniqueness, and sharp dimension-dependent spatio-temporal Hölder regularity for the canonical (zero drift) L-KS SPDE, driven by white noise on {R+×Rd}d=13. The spatio-temporal Hölder exponents are exactly the same as the striking ones we proved for our recently introduced Brownian-time Brownian motion (BTBM) stochastic integral equation, associated with time-fractional PDEs. The challenge here is that, unlike the positive BTBM density, the L-KS kernel is the Gaussian average of a modified, highly oscillatory, and complex Schrödinger propagator. We use a combination of harmonic and delicate analysis to get the necessary estimates. Second, attaching order parameters ε1 to the L-KS spatial operator and ε2 to the noise term, we show that the dimension-dependent critical ratio ε2/ε1d/8 controls the limiting behavior of the L-KS SPDE, as ε1,ε2↘0; and we compare this behavior to that of the less regular second order heat SPDEs. Finally, we give a change-of-measure equivalence between the canonical L-KS SPDE and nonlinear L-KS SPDEs. In particular, we prove uniqueness in law for the Swift-Hohenberg and the law equivalence-and hence the same Hölder regularity-of the Swift-Hohenberg SPDE and the canonical L-KS SPDE on compacts in one-to-three dimensions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 259, Issue 11, 5 December 2015, Pages 6851-6884
نویسندگان
,