کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6417258 1338666 2011 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transient spectral theory, stable and unstable cones and Gershgorinʼs theorem for finite-time differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Transient spectral theory, stable and unstable cones and Gershgorinʼs theorem for finite-time differential equations
چکیده انگلیسی

Dynamical behaviour on a compact (finite-time) interval is called monotone-hyperbolic or M-hyperbolic if there exists an invariant splitting consisting of solutions with monotonically decreasing and increasing norms, respectively. This finite-time hyperbolicity notion depends on the norm. For arbitrary norms we prove a spectral theorem based on M-hyperbolicity and extend Gershgorinʼs circle theorem to this type of finite-time spectrum. Similarly to stable and unstable manifolds, we characterize M-hyperbolicity by means of existence of stable and unstable cones. These cones can be explicitly computed for D-hyperbolic systems with norms induced by symmetric positive definite matrices and also for row diagonally dominant systems with the sup-norm, thus providing sufficient and computable conditions for M-hyperbolicity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 11, 1 June 2011, Pages 4177-4199
نویسندگان
, , ,