کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6419692 1631647 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Mahonian probability distribution on words is asymptotically normal
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The Mahonian probability distribution on words is asymptotically normal
چکیده انگلیسی

The Mahonian statistic is the number of inversions in a permutation of a multiset with ai elements of type i, 1⩽i⩽m. The counting function for this statistic is the q analog of the multinomial coefficient (a1+⋯+ama1,…,am), and the probability generating function is the normalization of the latter. We give two proofs that the distribution is asymptotically normal. The first is computer-assisted, based on the method of moments. The Maple package MahonianStat, available from the webpage of this article, can be used by the reader to perform experiments and calculations. Our second proof uses characteristic functions. We then take up the study of a local limit theorem to accompany our central limit theorem. Here our result is less general, and we must be content with a conjecture about further work. Our local limit theorem permits us to conclude that the coefficients of the q-multinomial are log-concave, provided one stays near the center (where the largest coefficients reside).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 46, Issues 1–4, January 2011, Pages 109-124
نویسندگان
, , ,