کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6419710 1631647 2011 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Laplace-type equations as conformal superintegrable systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Laplace-type equations as conformal superintegrable systems
چکیده انگلیسی

We lay out the foundations of the theory of second order conformal superintegrable systems. Such systems are essentially Laplace equations on a manifold with an added potential: (Δn+V(x))Ψ=0. Distinct families of second order superintegrable Schrödinger (or Helmholtz) systems (Δn′+V′(x))Ψ=EΨ can be incorporated into a single Laplace equation. There is a deep connection between most of the special functions of mathematical physics, these Laplace conformally superintegrable systems and their conformal symmetry algebras. Using the theory of the Laplace systems, we show that the problem of classifying all 3D Helmholtz superintegrable systems with nondegenerate potentials, i.e., potentials with a maximal number of independent parameters, can be reduced to the problem of classifying the orbits of the nonlinear action of the conformal group on a 10-dimensional manifold.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 46, Issues 1–4, January 2011, Pages 396-416
نویسندگان
, , , ,