کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6421022 1631807 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
ترجمه فارسی عنوان
تشخیص خطا بر اساس بردار ویژگی وابسته و شبکه عصبی احتمالی برای بلبرینگ اجزاء نورد
کلمات کلیدی
تشخیص گسل، بردار ویژگی وابسته، احتمال شبکه شبکه عصبی، تجزیه حالت تجربی، غلتک عنصر بلبرینگ،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

Rolling element bearings (REB) are crucial mechanical parts of most rotary machineries, and REB failures often cause terrible accidents and serious economic losses. Therefore, REB fault diagnosis is very important for ensuring the safe operation of rotary machineries. In previous researches on REB fault diagnosis, achieving the accurate description of faults has always been a difficult problem, which seriously restricts the reliability and accuracy of the diagnosis results. In order to improve the precision of fault description and provide strong basis for fault diagnosis, dependent feature vector (DFV) is proposed to denote the fault symptom attributes of the six REB faults in this paper, and this is a self-adaptive fault representation method which describes each fault sample according to its own characteristics. Because of its unique feature selection technique and particular structural property, DFV is excellent in fault description, and could lay a good foundation for fault diagnosis. The advantages of DFV are theoretically proved via the Euclidean distance evaluation technique. Finally, a fault diagnosis method combining DFV and probability neural network (PNN) is proposed and applied to 708 REB fault samples. The experimental results indicate that the proposed method can achieve an efficient accuracy in REB fault diagnosis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 247, 15 November 2014, Pages 835-847
نویسندگان
, , , , , , ,