کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6421470 1631833 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation
چکیده انگلیسی

A compact and semi-explicit finite difference scheme is proposed and analyzed for the Klein-Gordon-Zakharov (KGZ) equation. The new scheme is decoupled and linearized in practical computation, i.e., at each time step only two tri-diagonal systems of linear algebraic equations need to be solved by Thomas algorithm. So the new scheme is more efficient and more accurate than the classical finite difference schemes. Unique solvability of the difference solution is proved by using the energy method. Besides the standard energy method, in order to overcome the difficulty in obtaining the a priori estimate, an induction argument is introduced to prove that the new scheme is convergent for u(x,t) in the discrete H1-norm, and respectively for m(x,t) in the discrete L2-norm, at the order of O(τ2+h4) with time step τ and mesh size h. Numerical results are reported to verify the theoretical analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 221, 15 September 2013, Pages 433-443
نویسندگان
, , ,