کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6423411 | 1342357 | 2013 | 11 صفحه PDF | دانلود رایگان |

A family A of sets is said to be intersecting if any two sets in A intersect (i.e. have at least one common element). A is said to be centred if there is an element common to all the sets in A; otherwise, A is said to be non-centred. For any râ[n]:={1,â¦,n} and any integer kâ¥2, let Sn,r,k be the family {{(x1,y1),â¦,(xr,yr)}:x1,â¦,xr  are distinct elements of [n], y1,â¦,yrâ[k]} of k-signedr-sets on[n]. Let m:=max{0,2rân}. We establish the following Hilton-Milner-type theorems, the second of which is proved using the first:(i) If A1 and A2 are non-empty cross-intersecting (i.e. any set in A1 intersects any set in A2) sub-families of Sn,r,k, then |A1|+|A2|â¤nrkrââi=mrri(kâ1)inârrâikrâi+1. (ii) If A is a non-centred intersecting sub-family of Sn,r,k, 2â¤râ¤n, then |A|â¤{nâ1râ1krâ1ââi=mrâ1ri(kâ1)inâ1ârrâ1âikrâ1âi+1if r
Journal: Discrete Mathematics - Volume 313, Issue 18, 28 September 2013, Pages 1805-1815