کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6423477 | 1342378 | 2012 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sparsity and connectivity of medial graphs: Concerning two edge-disjoint Hamiltonian paths in planar rigidity circuits
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A simple undirected graph G=(V,E) is a rigidity circuit if |E|=2|V|â2 and |EG[X]|â¤2|X|â3 for every XâV with 2â¤|X|â¤|V|â1, where EG[X] denotes the set of edges connecting vertices in X. It is known that a rigidity circuit can be decomposed into two edge-disjoint spanning trees. Graver et al. (1993) [5] asked if any rigidity circuit with maximum degree 4 can be decomposed into two edge-disjoint Hamiltonian paths. This paper presents infinitely many counterexamples for the question. Counterexamples are constructed based on a new characterization of a 3-connected plane graph in terms of the sparsity of its medial graph and a sufficient condition for the connectivity of medial graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 312, Issue 16, 28 August 2012, Pages 2466-2472
Journal: Discrete Mathematics - Volume 312, Issue 16, 28 August 2012, Pages 2466-2472
نویسندگان
Shuji Kijima, Shin-ichi Tanigawa,