کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6423497 1342396 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hall-Littlewood polynomials, alcove walks, and fillings of Young diagrams
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Hall-Littlewood polynomials, alcove walks, and fillings of Young diagrams
چکیده انگلیسی

A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. The inversion statistic, which is the more intricate one, suffices for specializing a closely related formula to one for the type A Hall-Littlewood Q-polynomials (spherical functions on p-adic groups). An apparently unrelated development, at the level of arbitrary finite root systems, led to Schwer's formula (rephrased and rederived by Ram) for the Hall-Littlewood P-polynomials of arbitrary type. The latter formula is in terms of so-called alcove walks, which originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, we relate the above developments, by deriving a Haglund-Haiman-Loehr type formula for the Hall-Littlewood P-polynomials of type A from Ram's version of Schwer's formula via a “compression” procedure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 311, Issue 4, 28 February 2011, Pages 258-275
نویسندگان
,