کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6423602 1342425 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the existence of cycle frames and almost resolvable cycle systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the existence of cycle frames and almost resolvable cycle systems
چکیده انگلیسی

Suppose H is a complete m-partite graph Km(n1,n2,…,nm) with vertex set V and m independent sets G1,G2,…,Gm of n1,n2,…,nm vertices respectively. Let G={G1,G2,…,Gm}. If the edges of λH can be partitioned into a set C of k-cycles, then (V,G,C) is called a k-cycle group divisible design with index λ, denoted by (k,λ)-CGDD. A (k,λ)-cycle frame is a (k,λ)-CGDD (V,G,C) in which C can be partitioned into holey 2-factors, each holey 2-factor being a partition of V∖Gi for some Gi∈G. Stinson et al. have resolved the existence of (3,λ)-cycle frames of type gu. In this paper, we show that there exists a (k,λ)-cycle frame of type gu for k∈{4,5,6} if and only if g(u−1)≡0(modk), λg≡0(mod2), u≥3 when k∈{4,6}, u≥4 when k=5, and (k,λ,g,u)≠(6,1,6,3). A k-cycle system of order n whose cycle set can be partitioned into (n−1)/2 almost parallel classes and a half-parallel class is called an almost resolvable k-cycle system, denoted by k-ARCS(n). Lindner et al. have considered the general existence problem of k-ARCS(n) from the commutative quasigroup for k≡0(mod2). In this paper, we give a recursive construction by using cycle frames which can also be applied to construct k-ARCS(n)s when k≡1(mod2). We also update the known results and prove that for k∈{3,4,5,6,7,8,9,10,14} there exists a k-ARCS(2kt+1) for each positive integer t with three known exceptions and four additional possible exceptions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 311, Issue 20, 28 October 2011, Pages 2220-2232
نویسندگان
, , ,