کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
642421 1457037 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Design of neural network for manipulating gas refinery sweetening regenerator column outputs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Design of neural network for manipulating gas refinery sweetening regenerator column outputs
چکیده انگلیسی

In this study, a new approach for the prediction collection outputs of regenerator column in gas sweetening plant is suggested. The experimental input data, including inlet temperatures of reflux, difference between inlet and outlet condenser temperatures, amount of H2O and inlet amine temperatures and outlet down temperature of tower and amount of reflux as outputs have been used to create artificial neural network (ANN) models. The testing results from the model are in good agreement with the experimental data. The new proposed method was evaluated by a case study in HASHEMI NEJAD gas refinery in KHORASAN of Iran. Design of topology and parameters of the neural networks as decision variables was done by trial and error, high performance efficiency networks was obtained to predict the output parameters of regenerator column.

Figure optionsDownload as PowerPoint slideHighlights
► A new ANN models for the prediction of outputs of regenerator column in gas plant is suggested.
► The calculation process that takes place in regenerator column is simplified by ANN.
► Using ANN leads to the acceptable prediction of the output of regenerator column.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Separation and Purification Technology - Volume 82, 27 October 2011, Pages 1–9
نویسندگان
, , , ,