کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6424332 1632785 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The chromatic number of random Cayley graphs
ترجمه فارسی عنوان
تعداد کروماتیک گرافهای کایلی تصادفی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

We consider the typical behavior of the chromatic number of a random Cayley graph of a given group of order n with respect to a randomly chosen set of size k≤n/2. This behavior depends on the group: for some groups it is typically 2 for all k<0.99log2n, whereas for some other groups it grows whenever k grows. The results obtained include a proof that for any large prime p, and any 1≤k≤0.99log3p, the chromatic number of the Cayley graph of Zp with respect to a uniform random set of k generators is, asymptotically almost surely, precisely 3. This strengthens a recent result of Czerwiński. On the other hand, for k>logp, the chromatic number is typically at least Ω(k/logp) and for k=Θ(p) it is Θ(plogp).For some non-abelian groups (like SL2(Zq)), the chromatic number is, asymptotically almost surely, at least kΩ(1) for every k, whereas for elementary abelian 2-groups of order n=2t and any k satisfying 1.001t≤k≤2.999t the chromatic number is, asymptotically almost surely, precisely 4. Despite these discrepancies between different groups, it seems plausible to conjecture that for any group of order n and any k≤n/2, the typical chromatic number of the corresponding Cayley graph cannot differ from k by more than a poly-logarithmic factor in n.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 8, November 2013, Pages 1232-1243
نویسندگان
,