کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6424457 1632925 2017 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large sets of subspace designs
ترجمه فارسی عنوان
مجموعه های بزرگ طرح های زیرزمینی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

In this article, three types of joins are introduced for subspaces of a vector space. Decompositions of the Graßmannian into joins are discussed. This framework admits a generalization of large set recursion methods for block designs to subspace designs.We construct a 2-(6,3,78)5 design by computer, which corresponds to a halving LS5[2](2,3,6). The application of the new recursion method to this halving and an already known LS3[2](2,3,6) yields two infinite two-parameter series of halvings LS3[2](2,k,v) and LS5[2](2,k,v) with integers v≥6, v≡2(mod4) and 3≤k≤v−3, k≡3(mod4).Thus in particular, two new infinite series of nontrivial subspace designs with t=2 are constructed. Furthermore as a corollary, we get the existence of infinitely many nontrivial large sets of subspace designs with t=2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 147, April 2017, Pages 155-185
نویسندگان
, , , ,