کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6425076 | 1633783 | 2017 | 39 صفحه PDF | دانلود رایگان |

For the TZ metric on the moduli space M0,n of n-pointed rational curves, we construct a Kähler potential in terms of the Fourier coefficients of the Klein's Hauptmodul. We define the space Sg,n as holomorphic fibration Sg,nâSg over the Schottky space Sg of compact Riemann surfaces of genus g, where the fibers are configuration spaces of n points. For the tautological line bundles Li over Sg,n, we define Hermitian metrics hi in terms of Fourier coefficients of a covering map J of the Schottky domain. We define the regularized classical Liouville action S and show that expâ¡{S/Ï} is a Hermitian metric in the line bundle L=âi=1nLi over Sg,n. We explicitly compute the Chern forms of these Hermitian line bundlesc1(Li,hi)=43ÏTZ,i,c1(L,expâ¡{S/Ï})=1Ï2ÏWP. We prove that a smooth real-valued function âS=âS+Ïâi=1nlogâ¡hi on Sg,n, a potential for this special difference of WP and TZ metrics, coincides with the renormalized hyperbolic volume of a corresponding Schottky 3-manifold. We extend these results to the quasi-Fuchsian groups of type (g,n).
Journal: Advances in Mathematics - Volume 305, 10 January 2017, Pages 856-894