کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425224 1633790 2016 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ℓ-adic GKZ hypergeometric sheaves and exponential sums
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
ℓ-adic GKZ hypergeometric sheaves and exponential sums
چکیده انگلیسی

To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system. Its solutions are GKZ hypergeometric functions. We study the ℓ-adic counterpart of the GKZ hypergeometric system, which we call the ℓ-adic GKZ hypergeometric sheaf. It is an object in the derived category of ℓ-adic sheaves on the affine space over a finite field. Traces of Frobenius on stalks of this object at rational points of the affine space define the hypergeometric functions over the finite field introduced by Gelfand and Graev. We prove that the ℓ-adic GKZ hypergeometric sheaf is perverse, calculate its rank, and prove that it is irreducible under the non-resonance condition. We also study the weight filtration of the GKZ hypergeometric sheaf, determine its lisse locus, and apply our result to the study of weights of twisted exponential sums.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 298, 6 August 2016, Pages 51-88
نویسندگان
,