کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6426029 1345409 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topologically invariant Chern numbers of projective varieties
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Topologically invariant Chern numbers of projective varieties
چکیده انگلیسی

We prove that a rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least three we prove that only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily orientation-preserving. These results solve a long-standing problem of Hirzebruch's. We also determine the linear combinations of Chern numbers that can be bounded in terms of Betti numbers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 2, 30 January 2012, Pages 1300-1312
نویسندگان
,