کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
643672 884384 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Treating isopropyl alcohol by a regenerative catalytic oxidizer
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Treating isopropyl alcohol by a regenerative catalytic oxidizer
چکیده انگلیسی

Regenerative catalytic oxidizer (RCO) can be conveniently used to control emissions of volatile organic compounds (VOCs), because of their thermal recovery efficiency (TRE), low fuel cost and high oxidation. In this work, catalysts with various metal weight loadings were prepared by deposition–precipitation, wet impregnation and incipient impregnation to treat isopropyl alcohol (IPA). We used the excellent catalytic performance in a pilot RCO to test IPA oxidation performance under various conditions. The best catalyst was selected and its TRE, bed temperature variations, pressure drops and selectivity of the catalyst were more widely discussed. The results demonstrate that the optimal catalyst was prepared by wet impregnation with 20 wt.% metal on ceramic honeycomb (CH). 20 wt.% Cu–Co/(CH) catalyst was the best catalyst used in a RCO because it was effective in treating IPA, with a CO2 yield of up to 95% at a heating zone temperature (Tset) = 400 °C under various conditions. It also had the largest tolerance of variations in inlet IPA concentration and gas velocity (Ug). This 20 wt.% Cu–Co/(CH) catalyst in a RCO performed well in terms of TRE, pressure drop and selectivity to CO2. The TRE range in a RCO was from 87.8 to 91.2% under various conditions, and decreased as Ug increased in a fixed Tset. The pressure drop increased with Ug and Tset. The selectivity to CO2 increased to over 95% at 300 °C, and that to propene remained at 2–5% from 200 to 400 °C. Finally, the stability test results indicated that the 20 wt.% Cu–Co/(CH) catalyst was very stable at various CO2 yields and temperatures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Separation and Purification Technology - Volume 62, Issue 1, 1 August 2008, Pages 71–78
نویسندگان
, ,