کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6464680 1362207 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: Dual solution
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: Dual solution
چکیده انگلیسی


- MHD nanofluid flow induced by a stretching/shrinking sheet is studied.
- Exact solutions are obtained for the problem.
- Entropy generation is derived as a function of velocity and temperature gradients.
- Dual solutions are presented for some specific shrinking sheet cases.

In this article, attempts are made to present an exact solution for the fluid flow and heat transfer and also entropy generation analysis of the steady laminar magneto-hydrodynamics (MHD) nanofluid flow induced by a stretching/shrinking sheet with transpiration. This paper is the first contribution to the study of entropy generation for the nanofluid flow via exact solution approach. The governing partial differential equations are transformed into nonlinear coupled ordinary differential equations via appropriate similarity transformations. The current exact solution illustrates very good correlation with those of the previously published studies in the especial cases. The entropy generation equation is derived as a function of the velocity and the temperature gradients. The influences of the different flow physical parameters including the nanoparticle volume fraction parameter, the magnetic parameter, the mass suction/injection parameter, the stretching/shrinking parameter, and the nanoparticle types on the fluid velocity component, the temperature distribution, the skin friction coefficient, the Nusselt number and also the averaged entropy generation number are discussed in details. This study specifies that nanoparticles in the base fluid offer a potential in increasing the convective heat transfer performance of the various liquids. The results show that the copper and the aluminum oxide nanoparticles have the largest and the lowest averaged entropy generation number, respectively, among all the nanoparticles considered.

118

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advanced Powder Technology - Volume 28, Issue 2, February 2017, Pages 671-685
نویسندگان
, ,