کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6484836 364 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer
ترجمه فارسی عنوان
نانوپورفیرین های آنتی بادی جدید برای تشخیص فتودینامیک و درمان تریدودال برای سرطان مثانه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی
The overall prognosis of bladder cancer has not been improved over the last 30 years and therefore, there is a great medical need to develop novel diagnosis and therapy approaches for bladder cancer. We developed a multifunctional nanoporphyrin platform that was coated with a bladder cancer-specific ligand named PLZ4. PLZ4-nanoporphyrin (PNP) integrates photodynamic diagnosis, image-guided photodynamic therapy, photothermal therapy and targeted chemotherapy in a single procedure. PNPs are spherical, relatively small (around 23 nm), and have the ability to preferably emit fluorescence/heat/reactive oxygen species upon illumination with near infrared light. Doxorubicin (DOX) loaded PNPs possess slower drug release and dramatically longer systemic circulation time compared to free DOX. The fluorescence signal of PNPs efficiently and selectively increased in bladder cancer cells but not normal urothelial cells in vitro and in an orthotopic patient derived bladder cancer xenograft (PDX) models, indicating their great potential for photodynamic diagnosis. Photodynamic therapy with PNPs was significantly more potent than 5-aminolevulinic acid, and eliminated orthotopic PDX bladder cancers after intravesical treatment. Image-guided photodynamic and photothermal therapies synergized with targeted chemotherapy of DOX and significantly prolonged overall survival of mice carrying PDXs. In conclusion, this uniquely engineered targeting PNP selectively targeted tumor cells for photodynamic diagnosis, and served as effective triple-modality (photodynamic/photothermal/chemo) therapeutic agents against bladder cancers. This platform can be easily adapted to individualized medicine in a clinical setting and has tremendous potential to improve the management of bladder cancer in the clinic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 104, October 2016, Pages 339-351
نویسندگان
, , , , , , , , , , , , , ,