کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
650418 | 1457283 | 2014 | 4 صفحه PDF | دانلود رایگان |
In this paper we consider a very simplified model of a mature waterflooded oil reservoir and study the asymptotic behavior in time of well’s oil production. More precisely, under assumptions on stationary points, we mathematically justify and precise classical decline laws: the oil production rate decreases like C1t−γ for some γ>1γ>1 if the nonlinear front velocity vanishes when the oil concentration SS is close to vacuum (ϕ(S)=Sαϕ(S)=Sα with α>0α>0). A more general law is obtained for general vanishing function ϕϕ at vacuum. It decreases exponentially fast like C2exp(−t) if the nonlinear front velocity does not vanish. Our calculations allow us to express constants C1C1, C2C2 in terms of physical and geometrical features of the reservoir through PDEs resolution. To the authors’ knowledge, this is the first result taking into account space variables. This could be of particular interest for the optimization process of oil production.
Journal: European Journal of Mechanics - B/Fluids - Volume 43, January–February 2014, Pages 131–134