کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
653129 | 1457488 | 2015 | 5 صفحه PDF | دانلود رایگان |

In the present paper, the thermal conductivity of hybrid nanofluids is experimentally investigated. The studied nanofluid was produced using a two-step method by dispersing Cu and TiO2 nanoparticles with average diameter of 70 and 40 nm in a binary mixture of water/EG (60:40). The properties of this nanofluid were measured in various solid concentrations (0.1, 0.2, 0.4, 0.8, 1, 1.5, and 2%) and temperatures ranging from 30 to 60 °C. Next, two new correlations for predicting the thermal conductivity of studied hybrid nanofluids, in terms of solid concentration and temperature, are proposed that use an artificial neural network (ANN) and are based on experimental data. The results indicate that these two new models have great ability to predict thermal conductivity and show excellent agreement with the experimental results.
Journal: International Communications in Heat and Mass Transfer - Volume 66, August 2015, Pages 100–104