کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6538815 158726 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mangrove biomass estimation in Southwest Thailand using machine learning
ترجمه فارسی عنوان
برآورد زیست توده انبوه در جنوب غربی تایلند با استفاده از یادگیری ماشین
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک جنگلداری
چکیده انگلیسی
Mangroves play a disproportionately large role in carbon sequestration relative to other tropical forest ecosystems. Accurate assessments of mangrove biomass at the site-scale are lacking, especially in mainland Southeast Asia. This study assessed tree biomass and species diversity within a 151 ha mangrove ecosystem on the Andaman Coast of Thailand. High-resolution GeoEye-1 satellite imagery, medium resolution ASTER satellite elevation data, field-based tree measurements, published allometric biomass equations, and a suite of machine learning techniques were used to develop spatial models of mangrove biomass. Field measurements derived a whole-site tree density of 1313 trees ha−1, with Rhizophora spp. comprising 77.7% of the trees across forty-five 400 m2 sample plots. A support vector machine regression model was found to be most accurate by cross-validation for predicting biomass at the site level. Model-estimated above-ground biomass was 250 Mg ha−1; below-ground root biomass was 95 Mg ha−1. Combined above-ground and below-ground biomass for the entire 151-ha stand was 345 (±72.5) Mg ha−1, equivalent to 155 (±32.6) Mg C ha−1. Model evaluation shows the model had greatest prediction error at high biomass values, indicating a need for allometric equations determined over a larger range of tree sizes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Geography - Volume 45, December 2013, Pages 311-321
نویسندگان
, , , , , ,