کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
654376 | 885242 | 2011 | 5 صفحه PDF | دانلود رایگان |

This paper deals with the steady flow and heat transfer of a viscous incompressible power-law fluid over a rotating infinite disk. Assumed the thermal conductivity follows the same function as the viscosity, the governing equations in the boundary layer are transformed into a set of ordinary differential equations by generalized Karman similarity transformation. The corresponding nonlinear two-point boundary value problem was solved by multi-shooting method. Numerical results indicated that the parameters of power-law index and Prandtl number have significant effects on velocity and temperature fields. The thickness of the boundary layer decays with power-law index. The peak of the radial velocity changes slightly with power- law index. The values near the boundary are affected dramatically by the thickness of the boundary layer. With the increasing of the Prandtl number the heat conducts more strongly.
Journal: International Communications in Heat and Mass Transfer - Volume 38, Issue 3, March 2011, Pages 280–284