کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6680272 1428071 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers
ترجمه فارسی عنوان
یک روش موثر برای ارزیابی خواص ترموفیزیکی دستگاه و عملکرد کولرهای میکرو ترموالکتریک
کلمات کلیدی
سطح دستگاه، اثرات متقابل، اثر اندازه، عملکرد خنک کننده، کولر میکرو ترموالکتریک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Despite the success of achieving thermoelectric materials with high figure of merit, precisely evaluating the performance of micro-thermoelectric coolers remains challenging at the microdevice level because of various interfacial effects and device construction. This study develops a method for the effective evaluation of the device-level thermophysical properties capturing various interfacial and size effects, and establishes a three-dimensional numerical model to evaluate the cooling performance of micro-thermoelectric coolers. The model is validated by the reported experimental data. The impact of interaction between boundary and size effects is captured in the investigation of Seebeck coefficient, thermal conductivity and electricity resistivity of the thermoelectric materials at the device-level. Contact resistances are also considered in analyzing the cooling performance. Results indicate that the device-level figure of merit decreases by 5-18.1% with decreased thermoelectric element thickness from 20 μm to 5 μm. The boundary effects considerably weaken the cooling performance of the microdevice, and a higher heat flux corresponds to a greater impact of boundary effects. Cooling temperature increases by 6.1 K due to the boundary effects when heat flux is 300 W/cm2, while the temperature difference decreases by 17.1%. Finally, the three-dimensional numerical model is performed to evaluate the cooling performance and optimal working condition of the micro-thermoelectric cooler. At heat flux of 300 W/cm2 and 200 W/cm2, the minimum cold side temperatures of 310.7 K and 287.3 K are predicted to be achieved at 11 μm/20 mA (Hte/I), 15 μm/16 mA, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 219, 1 June 2018, Pages 93-104
نویسندگان
, , , , , ,