کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6689120 | 501889 | 2014 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A generic model-free approach for lithium-ion battery health management
ترجمه فارسی عنوان
یک رویکرد عمومی رایگان برای مدیریت سلامت باتری لیتیوم یون
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
باتری، مدیریت بهداشت، حالت دولتی، وضعیت سلامت، شبکه های عصبی مصنوعی، فیلتر کلمن،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Accurate estimation of the state-of-charge (SoC) and state-of-health (SoH) for an operating battery system, as a critical task for battery health management, greatly depends on the validity and generalizability of battery models. Due to the variability and uncertainties involved in battery design, manufacturing and operation, developing a generally applicable battery model remains as a grand challenge for battery health management. To eliminate the dependency of SoC and SoH estimation on battery physical models, this paper presents a generic data-driven approach that integrates an artificial neural network with a dual extended Kalman filter (DEKF) algorithm for lithium-ion battery health management. The artificial neural network is first trained offline to model the battery terminal voltages and the DEKF algorithm can then be employed online for SoC and SoH estimation, where voltage outputs from the trained artificial neural network model are used in DEKF state-space equations to replace the required battery models. The trained neural network model can be adaptively updated to account for the battery to battery variability, thus ensuring good SoC and SoH estimation accuracy. Experimental results are used to demonstrate the effectiveness of the developed model-free approach for battery health management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 135, 15 December 2014, Pages 247-260
Journal: Applied Energy - Volume 135, 15 December 2014, Pages 247-260
نویسندگان
Guangxing Bai, Pingfeng Wang, Chao Hu, Michael Pecht,