کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6696203 502349 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic programming for experimental big data mining: A case study on concrete creep formulation
ترجمه فارسی عنوان
برنامه نویسی ژنتیکی برای داده کاوی بزرگ آزمایشی: یک مطالعه موردی برای فرمول بندی خزش بتن
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی
This paper proposes a new algorithm called multi-objective genetic programming (MOGP) for complex civil engineering systems. The proposed technique effectively combines the model structure selection ability of a standard genetic programming with the parameter estimation power of classical regression, and it simultaneously optimizes both the complexity and goodness-of-fit in a system through a non-dominated sorting algorithm. The performance of MOGP is illustrated by modeling a complex civil engineering problem: the time-dependent total creep of concrete. A Big Data is used for the model development so that the proposed concrete creep model-referred to as a “genetic programming based creep model” or “G-C model” in this study-is valid for both normal and high strength concrete with a wide range of structural properties. The G-C model is then compared with currently accepted creep prediction models. The G-C model obtained by MOGP is simple, straightforward to use, and provides more accurate predictions than other prediction models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automation in Construction - Volume 70, October 2016, Pages 89-97
نویسندگان
, , , ,