کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
6727008 | 1428914 | 2018 | 20 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel method based on extreme learning machine to predict heating and cooling load through design and structural attributes
ترجمه فارسی عنوان
یک روش جدید مبتنی بر دستگاه یادگیری افراطی برای پیش بینی گرمایش و بارگیری خنک کننده از طریق ویژگی های طراحی و ساختاری است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
In the present day environment, smart buildings require optimization of energy consumption through monitoring, consumption prediction and making policy decisions accordingly. Attributes related to building design and structure play a vital role in heating load(HL) and cooling load(CL) of the building which directly affects the energy performance of the buildings. For prediction of HL and CL, emerging machine learning approaches can help in improving accuracy and efficiency in real time. This paper provides improvements in energy load assessment of the buildings. It is the first is the in-depth study and analysis of design and structural attributes and their correlation with HL and CL, the novel methods based on ELM and its variants online sequential ELM(OSELM) to predict HL and CL. This study also proposes OSELM based online/real-time prediction when data is coming in stream The total 24 models have been developed including 12 models based on ELM and 12 models based on OSELM with different feature sets and activation functions. Models have been compared on the basis of accuracy, computational performance and efficiency with few existing models. The experimental results show that the proposed models learn better and outperform other popular machine learning approaches such as the artificial neural network(ANNs), support vector machine(SVM), radial basis function network(RBFN), random forest(RF) and existing work in the energy and building domain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 176, 1 October 2018, Pages 275-286
Journal: Energy and Buildings - Volume 176, 1 October 2018, Pages 275-286
نویسندگان
Sachin Kumar, Saibal K. Pal, Ram Pal Singh,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت