کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
672967 | 1459480 | 2015 | 10 صفحه PDF | دانلود رایگان |
• We prepared β-PPR and studied its crystallization behavior with different melt structures.
• We observed surprising synergetic effect between β-NA and the ordered structures.
• We explored the nature of ordered structures by calculating the equilibrium temperature.
Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields. However, due to the random copolymer chain configuration, it is difficult to obtain high proportion of β-phase even under the influence of β-nucleating agent (β-NA). In this study, the melt structure (namely, the content of ordered structures in the melt) of β-nucleated ethylene-copolymerized PPR (β-PPR) was controlled by tuning the fusion temperature (Tf), and its impact on the crystallization and polymorphic behavior of β-PPR was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized optical microscopy (PLM) and scanning electronic microscopy (SEM). The result revealed that compared with the β-nucleated iPP homo-polymer, it is more difficult for β-PPR to form β-crystals; interestingly, when Tf is in the temperature range of 162–173 °C, the ordered structures survived in melt exhibit high β-nucleation efficiency under the influence of β-NA, resulting in significant increase of β-phase proportion and evident variation of crystalline morphology, which is called the Ordered Structure Effect (OSE). Moreover, through investigating the self-nucleation behavior and equilibrium melting temperature of pure PPR (non-nucleated PPR), the physical nature of the lower and upper limiting Tf temperatures for the occurrence of OSE in β-PPR was explored; the role of ethylene co-monomer in the occurrence of OSE was discussed.
Journal: Thermochimica Acta - Volume 604, 20 March 2015, Pages 67–76