کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6757594 | 511126 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Effects of free stream turbulence with large integral scale on the aerodynamic performance of an S809 airfoil-based wind turbine blade at low Reynolds number are studied using wind tunnel experiments. The case of wind turbine blades subjected to turbulence structures with large integral scale is of interest since in the atmospheric boundary layer very large-scale structures interact with the blades. A constant chord (2-D) S809 airfoil wind turbine blade model with an operating Reynolds number of 2.08Ã105 based on chord length was tested for a range of angles of attack representative of fully attached and stalled flow as encountered in typical wind turbine operation. The smooth-surface blade was subjected to a quasi-laminar free stream with very low free-stream turbulence as well as to elevated free-stream turbulence generated by an active grid. This turbulence contained large-scale eddies with levels of free-stream turbulence intensity of up to 6.14% and an integral length scale of about 60% of chord-length. The pressure distribution was acquired using static pressure taps and the lift was subsequently computed by numerical integration. The wake velocity deficit was measured utilizing hot-wire anemometry to compute the drag coefficient also via integration. In addition, the mean flow was quantified using 2-D particle image velocimetry (PIV) over the suction surface of the blade. Results indicate that turbulence, even with very large-scale eddies comparable in size to the chord-length, significantly improves the aerodynamic performance of the blade by increasing the lift coefficient and overall lift-to-drag ratio, L/D for all angles tested except 0°.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Wind Engineering and Industrial Aerodynamics - Volume 142, July 2015, Pages 246-257
Journal: Journal of Wind Engineering and Industrial Aerodynamics - Volume 142, July 2015, Pages 246-257
نویسندگان
Victor Maldonado, Luciano Castillo, Adrien Thormann, Charles Meneveau,