| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6763584 | 1431570 | 2019 | 18 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg
												
											ترجمه فارسی عنوان
													پیش بینی قدرت فتوولتائیک کوتاه مدت و منطقه ای، که توسط سیستم های مرجع بهبود یافته است، براساس مثال لوکزامبورگ
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
												
											چکیده انگلیسی
												The authors developed a forecasting model for Luxembourg, able to predict the expected regional PV power up to 72â¯h ahead. The model works with solar irradiance forecasts, based on numerical weather predictions in hourly resolution. Using a set of physical equations, the algorithm is able to predict the expected hourly power production for PV systems in Luxembourg, as well as for a set of 23 chosen PV-systems which are used as reference systems. Comparing the calculated forecasts for the 23 reference systems to their measured power over a period of 2 years, revealed a comparably high accuracy of the forecast. The mean deviation (bias) of the forecast was 1.1% of the nominal power - a relatively low bias indicating low systemic error. The root mean square error (RMSE), lies around 7.4% - a low value for single site forecasts. Two approaches were tested in order to adapt the short-term forecast, based on the present forecast deviations for the reference systems. Thereby, it was possible to improve the very short term forecast on the time horizon of 1-3â¯h ahead, specifically for the remaining bias, but also systemic deviations can be identified and partially corrected (e.g. snow cover).
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 132, March 2019, Pages 455-470
											Journal: Renewable Energy - Volume 132, March 2019, Pages 455-470
نویسندگان
												Daniel Koster, Frank Minette, Christian Braun, Oliver O'Nagy, 
											