کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6764092 | 1431577 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enhanced support vector regression based forecast engine to predict solar power output
ترجمه فارسی عنوان
بر اساس پیش بینی موتور رگرسیون بردار پشتیبانی برای پیش بینی خروجی نیروی خورشیدی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
The critical role of photovoltaic (PV) energy as renewable sources in network can make some problems in power grids operation. Due to high volatility of PV signal, the prediction and its evaluation in planning and operation is very difficult. For this purpose, an accurate prediction approach is developed in this paper to tackle the mentioned problem. The proposed approach is based on enhanced empirical model decomposition (EEMD), a new feature selection method and hybrid forecast engine. The proposed feature selection is formulated by different criteria to select the best candidate inputs of forecast engine. And finally the hybrid forecast engine composed of improved support vector regression (ISVR) plus optimization algorithm to fine tune the related free parameters. Effectiveness of proposed method is applied over real-world engineering test cases through comparison with various prediction models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 127, November 2018, Pages 269-283
Journal: Renewable Energy - Volume 127, November 2018, Pages 269-283
نویسندگان
Chuanfu Shang, Pengcheng Wei,