کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6765083 1431588 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance analysis of electrical signature analysis-based diagnostics using an electromechanical model of wind turbine
ترجمه فارسی عنوان
تجزیه و تحلیل عملکرد تجزیه و تحلیل مبتنی بر تحلیل امضا الکتریکی با استفاده از یک مدل الکترومکانیکی توربین بادی
کلمات کلیدی
مدل سازی توربین بادی، تشخیص توربین باد، تجزیه و تحلیل امضا الکتریکی، گسل های رانندگی، ضرب علامت گسست،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Electrical signature analysis-based (ESA-based) diagnostics of powertrain faults in wind turbines (WTs) is a promising alternative to the more traditional vibration-based condition monitoring. However, the attempt to identify mechanical faults in electrical signals requires the consideration of the complex electromechanical dynamics of the WT. This paper investigates the potential masking effect of power electronic switching and wind-induced speed fluctuations on the electrical signatures of typical powertrain mechanical faults (i.e. rotor imbalance, gear cracks and other localised faults). To identify the conditions in which these masking effects arise and their severity, an innovative full electromechanical model of a WT has been developed, based on the integration of previously proposed models of WT sub-systems, and with the addition of powertrain fault models. This numerical controlled environment allows assessing the impact of power electronics and wind-speed fluctuation on the detectability of powertrain faults by ESA. The results show the criticality of switching-induced noise over the whole range of simulated faults, whereas turbulence-induced noise is mainly affecting the detectability of low frequency signatures. An order-of-magnitude sensitivity analysis is provided for the selected faults and their interaction with the two masking effects, thus providing valuable indications for the development of WT ESA-based condition monitoring systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 116, Part B, February 2018, Pages 15-41
نویسندگان
, , , ,