کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6765110 | 1431587 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, the cyclic variability of a diesel engine using diesel fuel and butanol-diesel fuel blends is modeled using an artificial neural network (ANN) method. The engine was operated with ten different engine speeds and full load conditions using six different n-butanol-diesel fuel blends. The coefficient of variation (COV) of the indicated mean effective pressure (IMEP), which is a well-accepted evaluation method, was used to assess the cyclic variability for 100 sequential engine cycles. Results indicated that adding n-butanol to diesel fuel caused an increase. Moreover, the COVimep values exhibited a decreasing trend with an increase in the engine speed for each fuel. The experimental results were used to train the ANN. The ANN network was trained with Levenberg - Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms. After training the ANN, it was found that the coefficient of determination (R2) values were in the range of between 0.737 and 0.9677, the mean-absolute-percentage error (MAPE) values were smaller than 8.7 and the mean-square error values (MSE) were smaller than 0.042. The predictions of the developed ANN model showed reasonable consistency with the experimental results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 117, March 2018, Pages 538-544
Journal: Renewable Energy - Volume 117, March 2018, Pages 538-544
نویسندگان
Samet Gürgen, Bedir Ãnver, İsmail Altın,