کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6766184 512449 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals
ترجمه فارسی عنوان
تشخیص خطای تحمل ژنراتور برای توربین بادی از طریق تبدیل موجک تجربی با استفاده از سیگنال های ارتعاش اندازه گیری شده است
کلمات کلیدی
توربین بادی، بلبرینگ ژنراتور، گسل ضعیف و تشخیص خطا مرکب، تبدیل موجک تجربی، ضریب همبستگی فضایی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
The implementation of condition monitoring and fault diagnosis system (CMFDS) on wind turbine is significant to lower the unscheduled breakdown. Generator is one of the most important components in wind turbine, and generator bearing fault identification always draws lots of attention. However, non-stationary vibration signal of weak fault and compound fault with a large amount of background noise makes this task challenging in many cases. So, effective signal processing method is essential in the accurate diagnosis step of CMFDS. As a novel signal processing method, empirical Wavelet Transform (EWT) is used to extract inherent modulation information by decomposing signal into mono-components under an orthogonal basis, which is seen as a powerful tool for mechanical fault diagnosis. Moreover, in order to avoid the inaccurate identification the internal modes caused by the heavy noise, wavelet spatial neighboring coefficient denoising with data-driven threshold is applied to increase Signal to Noise Ratio (SNR) before EWT. The effectiveness of the proposed technique on weak fault and compound fault diagnosis is first validated by two experimental cases. Finally, the proposed method has been applied to identify fault feature of generator bearing on wind turbine in wind farm successfully.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 89, April 2016, Pages 80-92
نویسندگان
, , , , ,